Evolution and Diversification of Snake Venom Toxins

toxins-logo

Snake venom toxins are well-known for their profound physiological effects that enable their use as tools to aid basic research and clarify pathological processes; they also have enormous potential in drug design and development. Further, an area of growing interest is the molecular evolution and diversification of these toxins, a particularly rapid and dynamic process for which the underlying mechanisms are still being unraveled.

Three articles recently published in the journal Toxins, and highlighted below, report on important and exciting advances in snake venom research. The first demonstrates the use of transcriptomics and gene network analysis to identify venom toxins, a method offering advantages over similarity-based or assay-guided methods that could fail to identify major venom components of a transcriptome. The second paper proposes a new theory called RAVER (Rapid Accumulation of Variations in Exposed Residues) to explain the rapid molecular evolution and diversification of venom toxins.  Finally, using random sequencing of cDNA libraries from small Australian elapid snakes, the third paper describes the evolution and diversity of toxin genes, and identifies novel toxin sequences from these understudied snake species.

Atractaspis aterrima Toxins: The First Insight into the Molecular Evolution of Venom in Side-Stabbers  Using high-throughput transcriptomics and an original bioinformatics analysis pipeline, Terrat et al.demonstrates the molecular diversity of venom from Atractaspis aterrima—the slender burrowing asp.  A large diversity of three-finger toxins, were found to have evolved under the significant influence of positive selection. The study reveals the relative abundance of different toxin groups, rare transcripts, new insight into the transcriptomic machinery, and the detection of numerous highly-transcribed compounds that possess all the key features of venom-components and may constitute new classes of toxins.

Terrat, Y.; Sunagar, K.; Fry, B.G.; Jackson, T.N.W.; Scheib, H.; Fourmy, R.; Verdenaud, M.; Blanchet, G.; Antunes, A.; Ducancel, F. Atractaspis aterrima Toxins: The First Insight into the Molecular Evolution of Venom in Side-StabbersToxins 20135, 1948-1964.

Three-Fingered RAVERs: Rapid Accumulation of Variations in Exposed Residues of Snake Venom Toxins  Snake venom three-finger toxins (3FTx) represent one of the most abundantly secreted and potently toxic components of the colubrid (Colubridae), elapid (Elapidae) and psammophid (Psammophiinae subfamily of the Lamprophidae) snake venom arsenal. Despite conserved structural similarity, they perform a diversity of biological functions and are theorised to undergo adaptive evolution, though the underlying diversification mechanisms remain elusive. Sunagar et al., describe the molecular evolution of different 3FTx functional forms and show that positively selected point mutations have driven the rapid evolution and diversification of 3FTx. A previous theory of 3FTx molecular evolution (termed ASSET) is shown to be evolutionarily implausible and cannot account for the considerable variation observed in very short segments of 3FTx. Instead, the authors propose a new theory of Rapid Accumulation of Variations in Exposed Residues (RAVER) to illustrate the significance of point mutations, guided by focal mutagenesis and positive selection in the evolution and diversification of 3FTx.

Sunagar, K.; Jackson, T.N.W.; Undheim, E.A.B.; Ali, S.A.; Antunes, A.; Fry, B.G. Three-Fingered RAVERs: Rapid Accumulation of Variations in Exposed Residues of Snake Venom ToxinsToxins 20135, 2172-2208.

Venom Down Under: Dynamic Evolution of Australian Elapid Snake Toxins   Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on only a few species, and of these, very few toxins have been fully sequenced. To gain further insight into the molecular evolutionary history of major toxin classes, Jackson et al., investigated venom gland transcriptomes using random sequencing of cDNA libraries from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The toxic arsenals of the tested species, many of which are typically considered harmless to humans, were demonstrated to be potentially similar in complexity to those of larger, “medically significant” species. The novel sequences recovered in this study reveal the huge diversity of unstudied venomous Australian snakes and represent an untapped bioresource in the search for novel compounds for use in drug design and development.

Jackson, T.N.W.; Sunagar, K.; Undheim, E.A.B.; Koludarov, I.; Chan, A.H.C.; Sanders, K.; Ali, S.A.; Hendrikx, I.; Dunstan, N.; Fry, B.G. Venom Down Under: Dynamic Evolution of Australian Elapid Snake Toxins. Toxins 2013, 5, 2621-2655.

Comments

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s